

MEET THE TEAM

Carter Bryant

Land Development, Codes, LID

Cheyenne Stevens

Schedule & Cost, Utilities, Environmental

Anar Yazji

Structural Design & Detailing

Ahmad Alnourachi

Geotechnical Analysis, Soil Treatment

Reynaldo Reyna

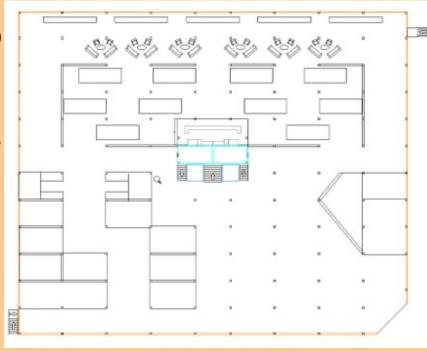
Drainage, Site Plans

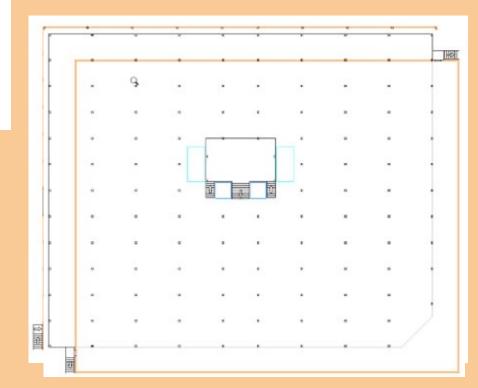
ROADRUNNER EXECUTIVE TOWER SPEAKER: CARTER BRYANT

-A two-story productivity space designed to promote and grow the relationship between academia, local professionals, and the environment.

Two-story building (220' x 180' x 38')

Low Impact Development Site Design


Serve to improve existing site conditions and manage stormwater


First story accessible to public

- Subscription based and day passes
- Floor plan inspired by the **UTSA Makerspace**
- Coffee bar

Second story professional office space

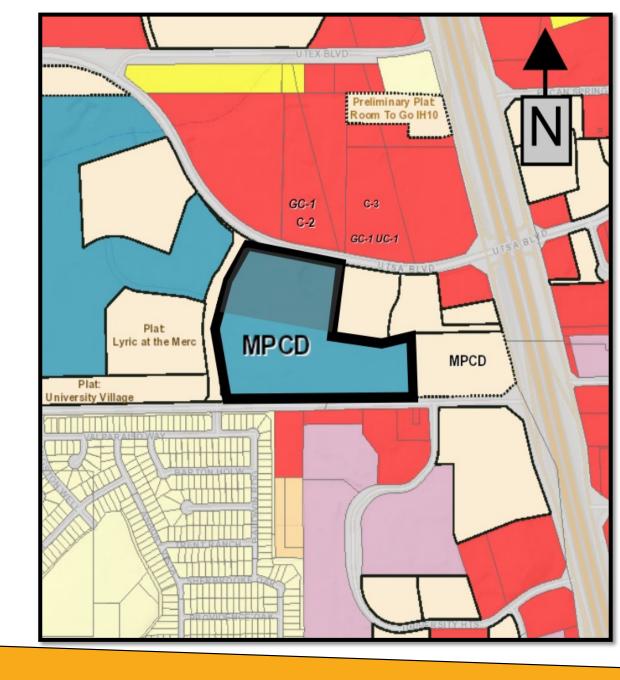
Local firms/businesses lease office space

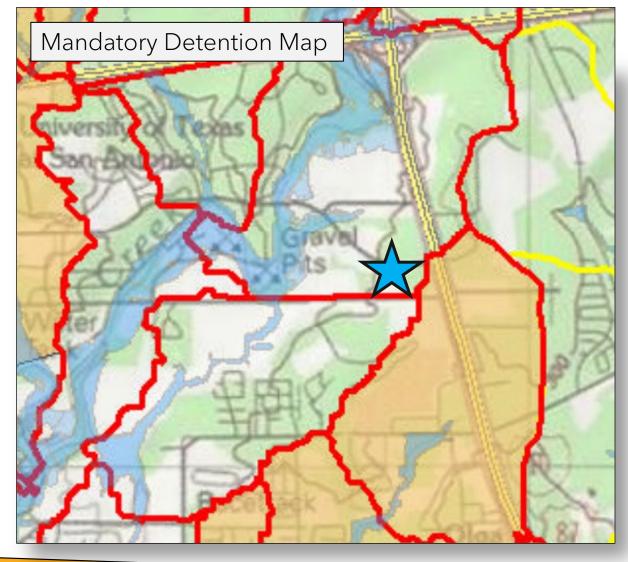
ZONING SPEAKER: CARTER BRYANT

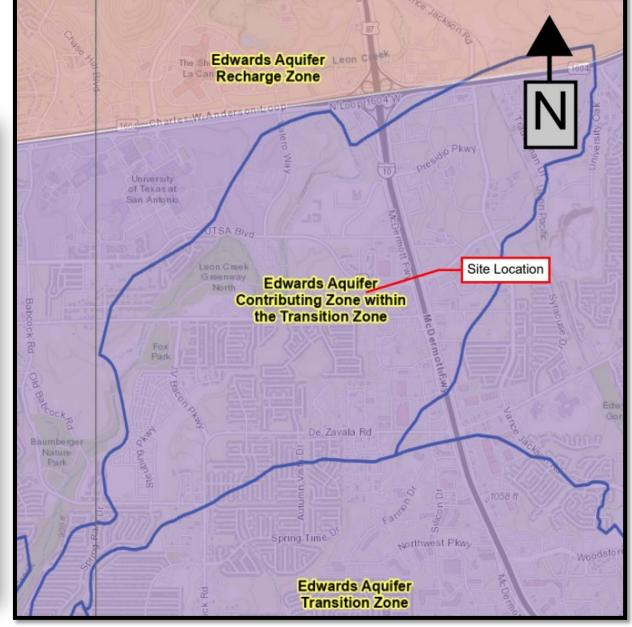
Master Plan Community District (MPCD)

• "To encourage the development of areas of <u>mixed uses</u> that are internally compatible in an effort to achieve well designed development and provide a more efficient arrangement of land uses, building and circulation systems."

Parking

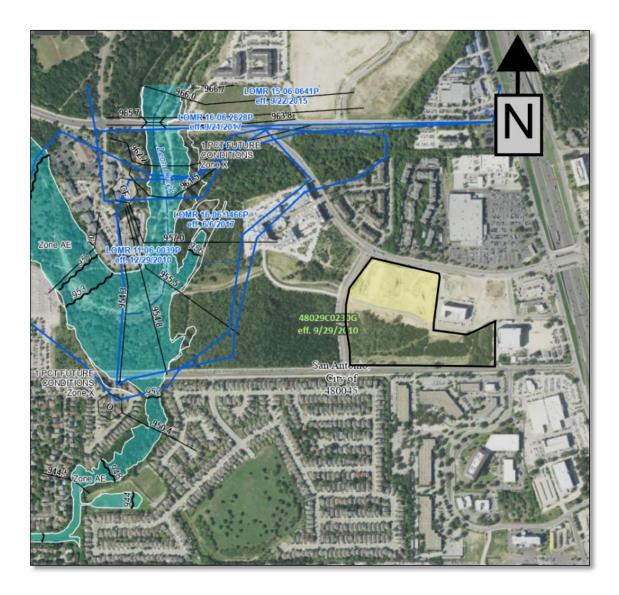

- 1 per 300 to 140 sf GFA = $\underline{260}$ parking spaces (min)
 - o Can be reduced by LID


Building Height


"May exceed two (2) stories or thirty (30) feet in height, but shall not exceed three (3) stories or forty (40) feet in height, if the structure is one hundred (100) feet or less from a single-family area"

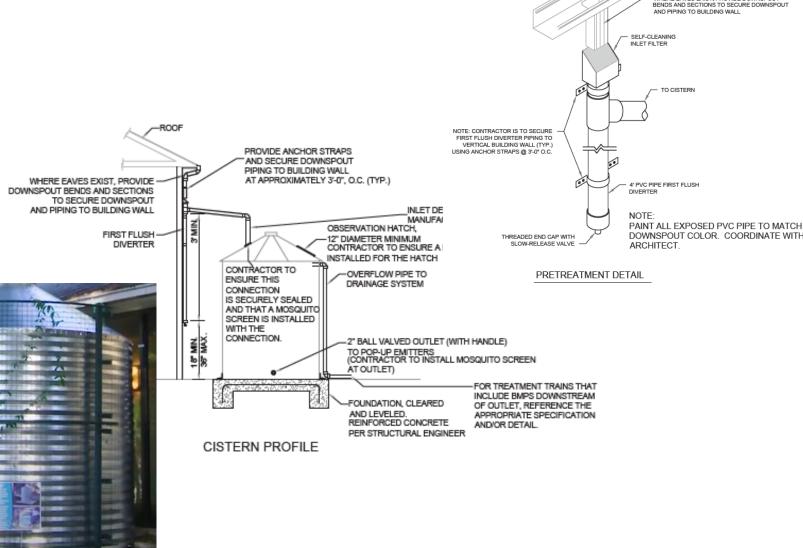
Parkland Requirements

Satisfied by LID and walking trail



FLOODPLAIN AND HABITAT COMPLIANCE

SPEAKER: CARTER BRYANT


ROOFTOP RAIN CAPTURE

SPEAKER: CARTER BRYANT

39,600 SF of standing seam metal roof

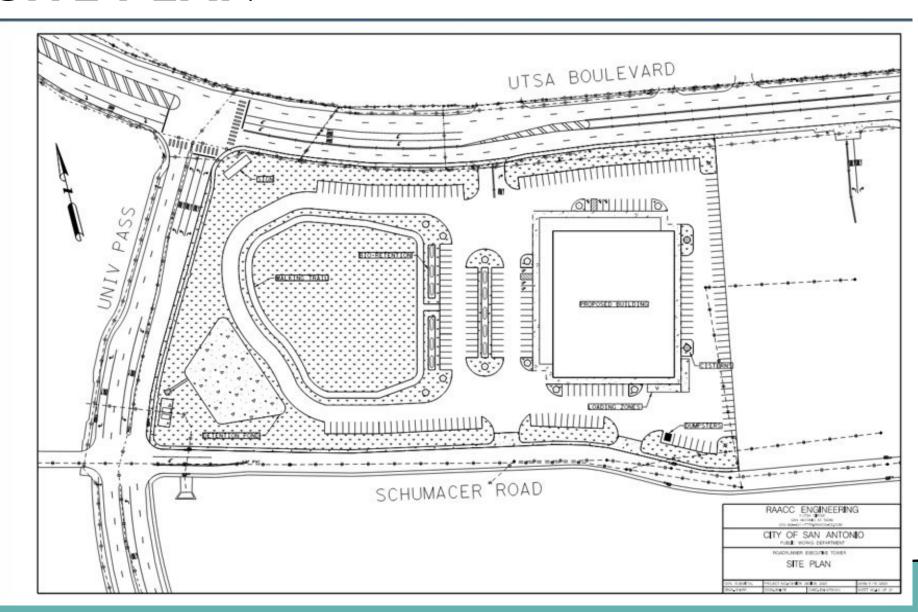
Single pitch at 2% slope

 Sloped gutter design to capture rainfall into 2 cisterns for irrigation and flow mitigation

WHERE EAVES EXIST, PROVIDE DOWNSPOUT

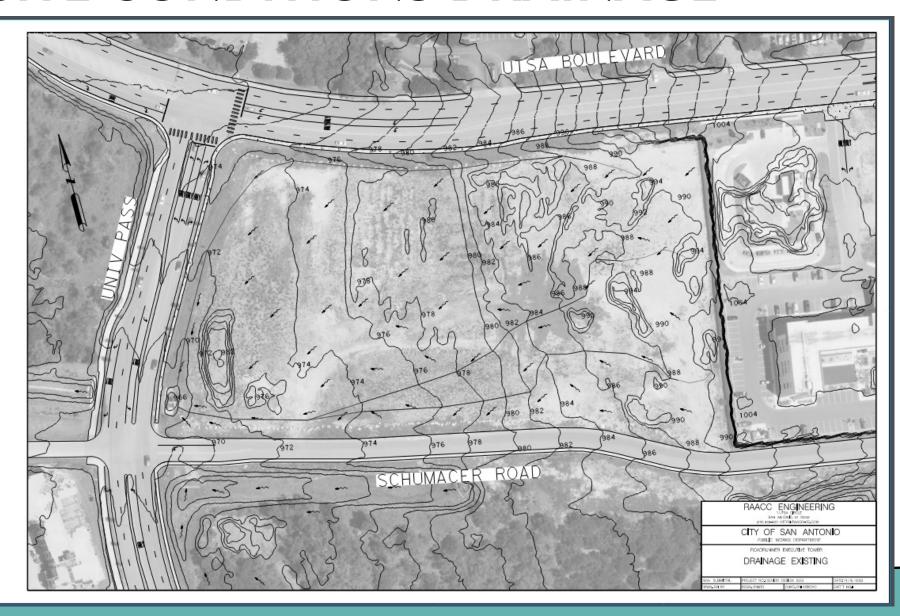
LID FEATURES

SPEAKER: CARTER BRYANT


- Bioswale/natural channels (north and south)
 - Facilitate drainage east to west
- Bioretention at middle parking islands
 - Capture runoff from across the site
- Bioretention at grade at perimeter of balcony
 - Sloped deck into recessed trench drain

PROPOSED SITE PLAN

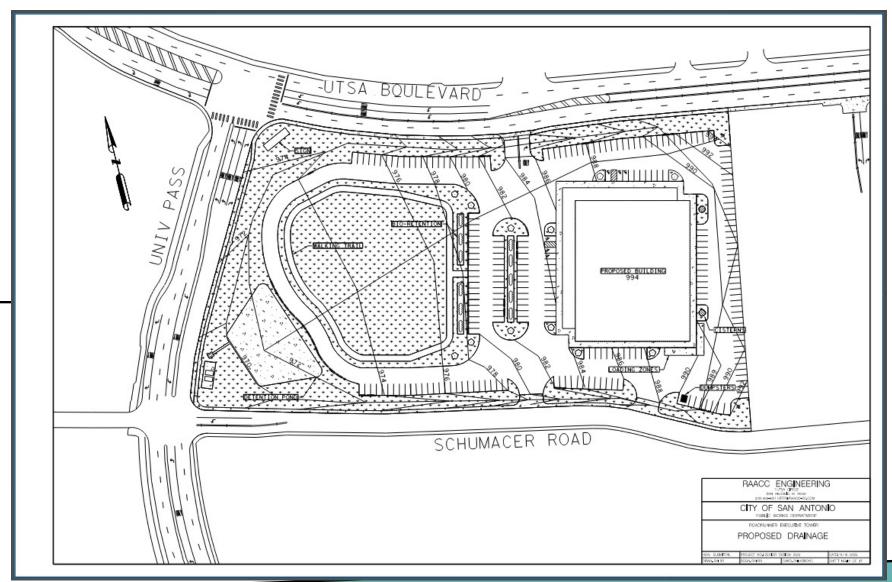
SPEAKER: REYNALDO REYNA


- 240 Parking Spots
- 3 Driveways
- 3 Bio-Retention
- 2 Cisterns
- Walking Trail
- Future Development
- Detention Pond
- Existing Storm Drain

EXISTING SITE CONDITIONS DRAINAGE

SPEAKER: REYNALDO REYNA

- Natural Channels
- Sheet Flow 100'
- Drains into Leon Creek



PROPOSED GRADING

SPEAKER: REYNALDO REYNA

994' Building Elevation

Saw-Tooth Curb Outlets

EXISTING DRAINAGE CALCS

SPEAKER: REYNALDO REYNA

					Tme	of Concentration	on - Pre Deve	lopment Cond	ditions						
	9	Sheet Flow					Shallow Concentrated Flow				Channel Flow				Total
Basin ID	Length (ft)	Mannings "n"	Slope %	P (in)	Tc (min)	Length (ft)	К	Slope %	Tc (min)	Length (ft)	Mannings (n)	Slope %	Channel Hydraulic Radius (ft)	Tc (min)	Tc (min)
1	100	0.011	0.06	4.44	0.663	100	16.13	0.02	0.844	753	0.03	0.03	1.78	0.347	1.853
2	100	0.011	0.06	4.44	0.663	780	16.13	0.02	6.024	283	0.03	0.03	1.85	0.127	6.814
3	100	0.011	0.06	4.44	0.663	532	16.13	0.03	3.174	281	0.03	0.03	1.85	0.126	3.963

Coeff.	2-YEAR	5-YEAR	10-YEAR	25-YEAR	50-YEAR	100-YEAR
e	0.8208	0.8043	0.8075	0.7943	0.7893	0.7889
b (in.)	59.68	73.54	90.56	102.29	116.01	133.97
d (min)	9.96	9.56	10.73	10.64	10.41	11.01

	Intensity - Pre Development Conditions												
Basin ID	Basin Area (Acres)	Basin C Value	Time of Concentration (Tc)	Intensity 2-yr (in/hr)	Intensity 5-yr (in/hr)	Intensity 10-yr (in/hr)	Intensity 25-yr (in/hr)	Intensity 50-yr (in/hr)	Intensity 100-yr (in/hr)				
1.000	8.440	0.700	1853	7.864	10.376	11.718	13.764	16.042	17.858				
2.000	8.440	0.700	6.814	5.897	7.762	8.960	10.554	12.269	13.807				
3.000	8.440	0.700	3.963	6.872	9.053	10.340	12.160	14.153	15.842				

Q - Pre Development Conditions									
Q 2-yr Q 5-yr (cfs)		Q 10-yr (cfs)	Q 25-yr (cfs)	Q 50-yr (cfs)	Q 100-yr (cfs)				
46.458	61.303	69.229	81.317	94.775	105.506				
34.841	45.859	52.935	62.350	72.487	81.570				
40.598	53.487	61.086	71.840	83.616	93.595				

PROPOSED DRAINAGE CALCS

SPEAKER: REYNALDO REYNA

					Time	of Concentration	n - Post Deve	lopment Con	ditions						7.5
	Sheet Flow					Shallow Concentrated Flow			Channel Flow				Total		
Basin ID	Length (ft)	Mannings "n"	Slope %	P (in)	Tc (min)	Length (ft)	К	Slope %	Tc (min)	Length (ft)	Mannings (n)	96	Channel Hydraulic Radius (ft)	To (min)	Tc (min)
1	100	0.011	0.04	4.44	0.780	621	20.32	0.03	2.941	71	0.035	0.03	10	0.012	3.732
2	100	0.011	0.04	4.44	0.780	105	20.32	0.02	0.609	877	0.035	0.02	10	0.162	1.550
3	100	0.011	0.04	4.44	0.780	163	20.32	0.02	0.945	664	0.035	0.03	10	0.113	1.838

Coeff.	2-YEAR	5-YEAR	10-YEAR	25-YEAR	50-YEAR	100-YEAR
e	0.8208	0.8043	0.8075	0.7943	0.7893	0.7889
b (in.)	59.68	73.54	90.56	102.29	116.01	133.97
d (min)	9.96	9.56	10.73	10.64	10.41	11.01

	9		Inte	nsity - Post I	Developmen	t Conditions	2	2	
Basin ID	Basin Area (Acres)	Basin C Value	Time of Concentration (Tc)	Intensity 2-yr (in/hr)	Intensity 5-yr (in/hr)	Intensity 10-yr (in/hr)	Intensity 25-yr (in/hr)	Intensity 50-yr (in/hr)	Intensity 100-yr (in/hr)
1	8.44	0.9	3.732	6.966	9.179	10.472	12.314	14.335	16.037
2	8.44	0.9	1.550	8.033	10.603	11.951	14.035	16.362	18.197
3	8.44	0.9	1.838	7.872	10.388	11.730	13.777	16.058	17.875

	Q - Post Development Conditions											
Q 2-yr (cfs)	Q 5-yr (cfs)	Q 10-yr (cfs)	Q 25-yr (cfs)	Q 50-yr (cfs)	Q 100-yr (cfs)							
52.917	69.726	79.548	93.539	108.886	121.818							
61.020	80.544	90.779	106.610	124.285	138.227							
59.797	78.905	89.098	104.654	121.976	135.780							

RAACC ENGINEERING

TATA GROW

THE ACTUAL IT SOME

PORT ACCURATE OF THE ACCURAT

DETENTION BASIN CALCS

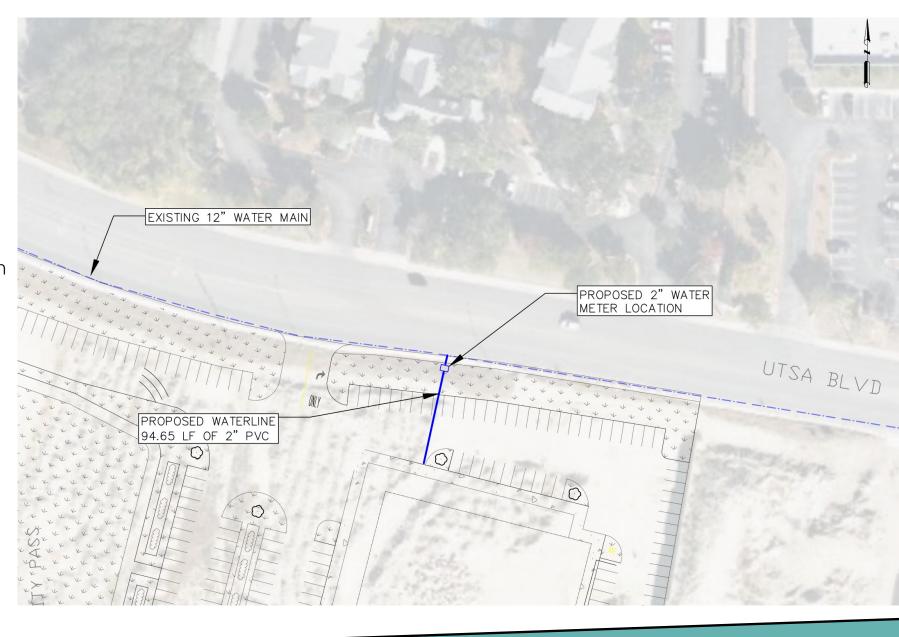
SPEAKER: REYNALDO REYNA

	Q - Pre	Development	Conditions		
Q 2-yr (cfs)	Q 5-yr (cfs)	Q 10-yr (cfs)	Q 25-yr (cfs)	Q 50-yr (cfs)	Q 100-yr (cfs)
		, ,	` '	` '	` '
46.458	61.303	69.229	81.317	94.775	105.506
34.841	45.859	52.935	62.350	72.487	81.570
40.598	53.487	61.086	71.840	83.616	93.595
	Q - Post	Developmen	t Conditions	;	
		0.10 1/2	0.25 15	O 50 1	0.100
Q 2-yr (cfs)	Q 5-yr (cfs)	Q 10-yr	Q 25-yr	Q 50-yr	Q 100-yr
		(cfs)	(cfs)	(cfs)	(cfs)
52.917	69.726	79.548	93.539	108.886	121.818
61.020	80.544	90.779	106.610	124.285	138.227
59.797	78.905	89.098	104.654	121.976	135.780
	1-hr Retentio	on (25-yr)			
Required	Volume of	Detention	Detention		
Retention	Flow	Area	Height		
(cfs)	(cf)	(ft^2)	(ft)		
(===)	(=-7	(/	(/		
12.22	44000.64	13500	3.26		
12.22		15500	5.20		
44.26	159334.13	13500	11.80		
32.81	118130.42	13500	8.75		
25.29	91055.14	13500	7.00		
Basin Volume	94500.00				

UTILITIES

SPEAKER: CHEYENNE STEVENS

Water Utilities for Site:


SAWS Service area

- Located in Pressure Zone 8
- Middle Elevation area

Approximate EDU required per SAWS Infrastructure Planning EDU Calculation Sheet - 9.5 EDU

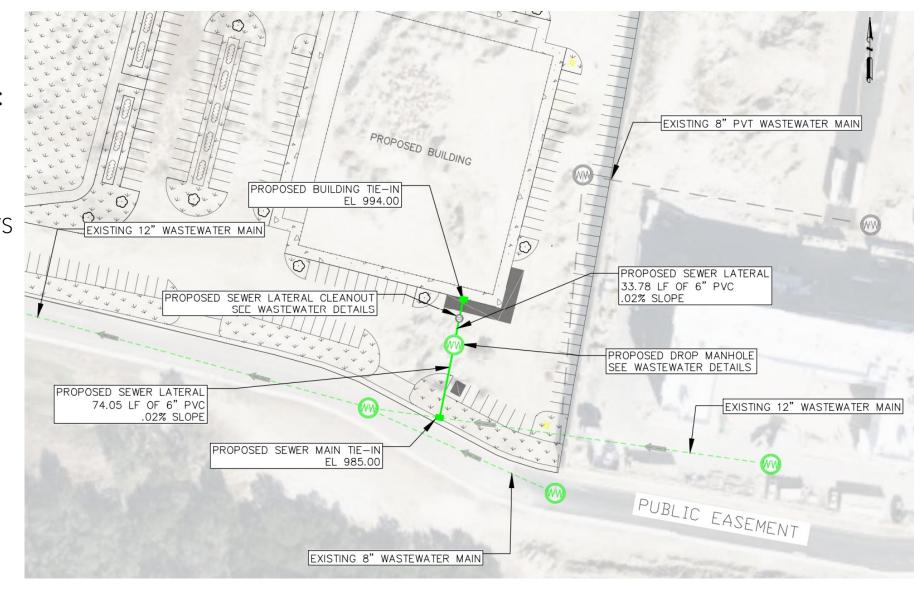
Proposed Plan:

- 2" water meter
- 2" Service Line
- No PRV Required
 - (Static pressure < 80PSI)
- Length of connection 94.65LF

UTILITIES

SPEAKER: CHEYENNE STEVENS

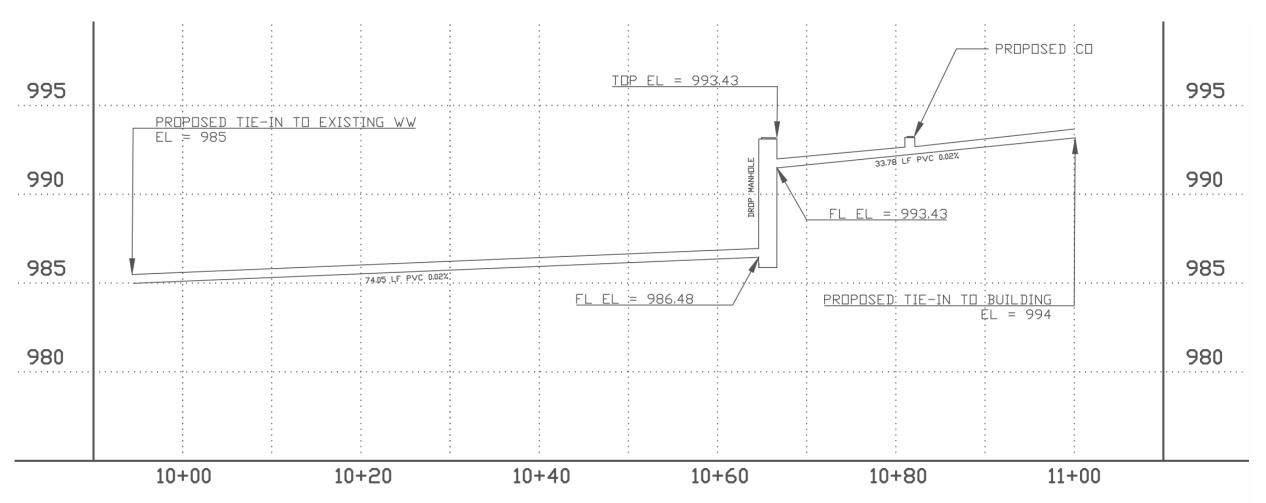
Wastewater Utilities for Site:


SAWS Service area

• Upper Collection Zone

Approximate EDU required per SAWS Infrastructure Planning EDU Calculation Sheet - 13.86 EDU

Proposed Plan:


- 6" PVC Pipe @ 2% Slope
- Drop Manhole required
- Cleanout required

16

WASTEWATER PLAN AND PROFILE

SPEAKER: CHEYENNE STEVENS

UTILITIES

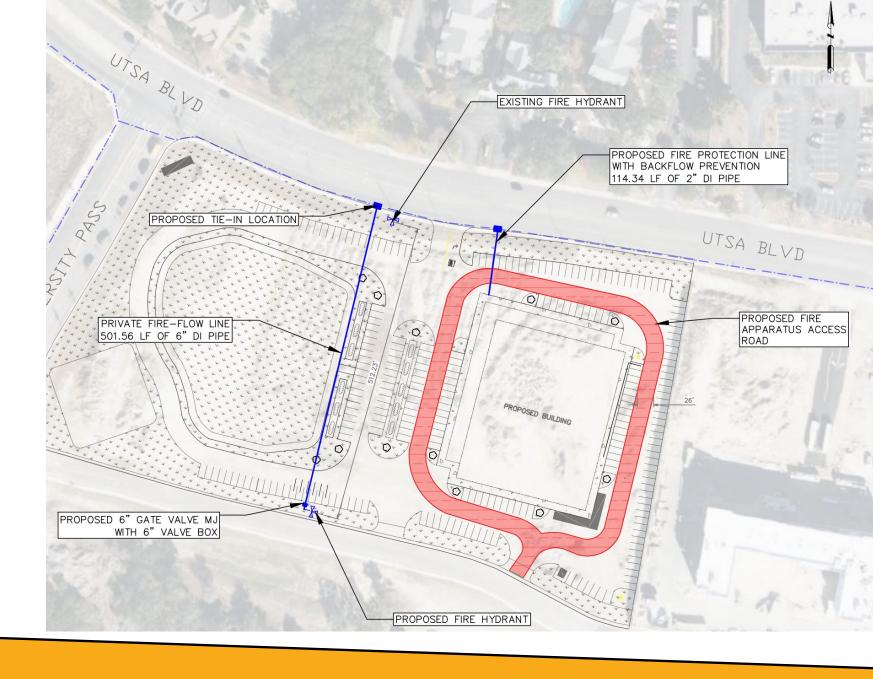
SPEAKER: CHEYENNE STEVENS

Fire Protection Plan:

Fire-Resistance rating for the building:

• Type IIA per 2021 IFC

Fire Protection Line


- NFPA 13 Sprinkler System
- 2" DI Pipe w/ BFP

Minimum Fire Flow Required:

- 1,000 GPM
- 1 Fire Hydrant Required
- 6" DI Pipe w/ MJ gate valve

Fire Apparatus Access Road

• Min of 26FT in width

SITE GEOLOGY

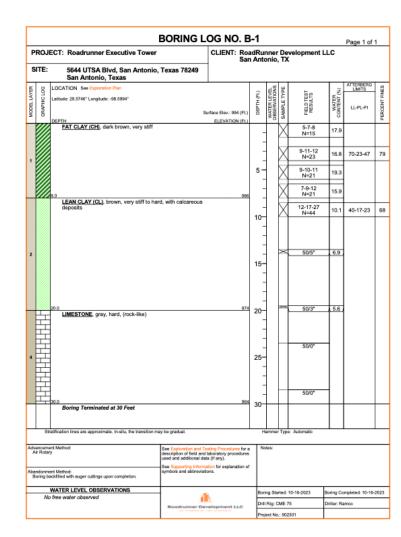
SPEAKER: AHMAD ALNOURACHI

- Located on UTSA Boulevard and Univ Pass
- Del Rio Clay (Blue)
- Buda Limestone (Yellow)

SITE GEOLOGY

SPEAKER: AHMAD ALNOURACHI

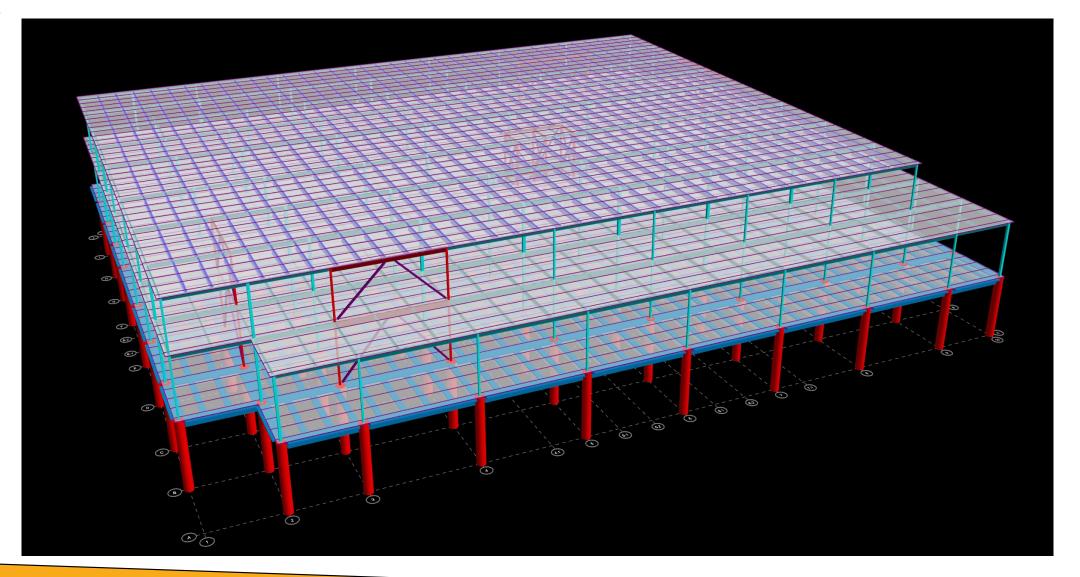
3 Borings


- 1 for the Building
- 2 for the Parking Lot
- Depths 10 to 30 feet
- No water observed while drilling


Soils:

- Fat Clay Pl of 47
- Lean Clay PI of 23
- Lime Stone

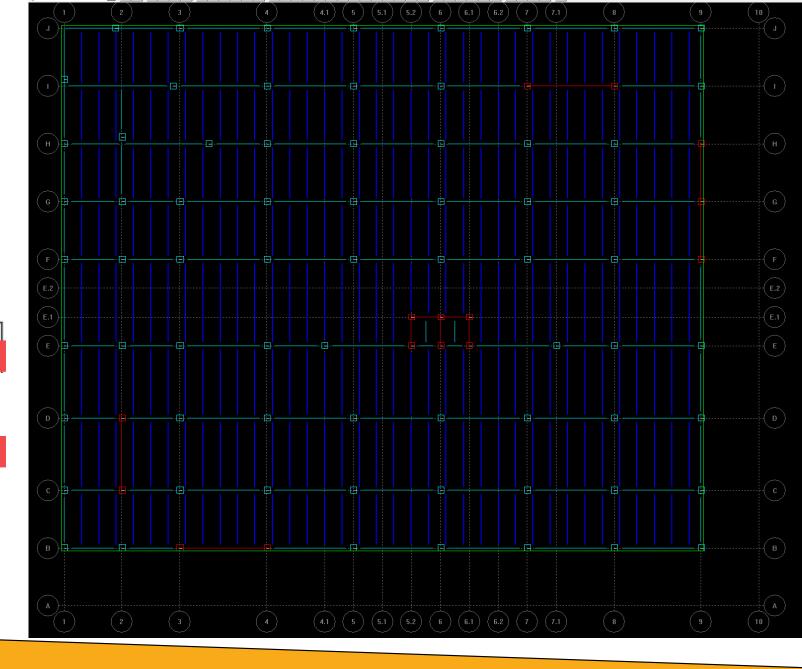
Lime Treatment:


- Upper 6" of Fat Clay
- Stabilize Subgrade
- Increase Bearing Capacity
- 25 lbs/ sq yrd

FRAMING

SPEAKER: ANAR YAZJI

ROOF FRAMING


SPEAKER: ANAR YAZJI

[1.5B Gr50 22-Gage Roof Deck]

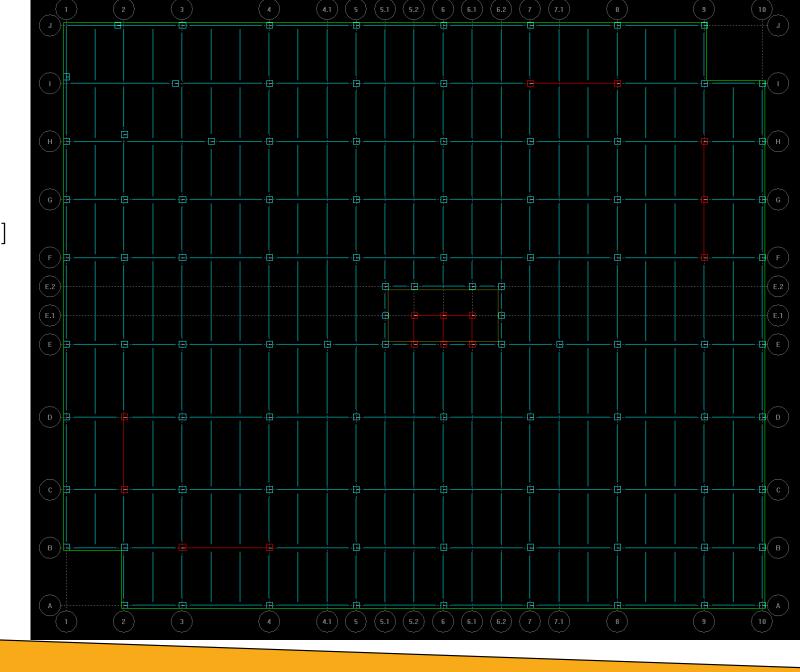
Interior Girders: W16x26
Perimeter Beams: W12x19

20' LENGTH

	ZO LENGTH											
	12K1	241	142	362	5.1	4		2/0/0)			
	14K1	284	197	426	5.3	4		2/0/0	O			
Ī	25' LENGTH											
	14K1	180	100	270	5.3	4	П	2/0/0				
	16K2	234	150	351	5.7	4		2/0/0				
	18K3	295	214	443	6.5	4		2/0/0				
			30	LENGTH								
	16K4	217	112	326	6.4	4	2	2/0/0				
	20K3	227	153	341	6.6	5	3	3/0/0				
	16K5	244	126	366	7.3	4	2	2/0/0				
	16K6	266	137	399	7.8	5	2	2/0/0				
	24K6	406	319	609	8.2	5	2	2/0/0				

SECOND FLOOR FRAMING

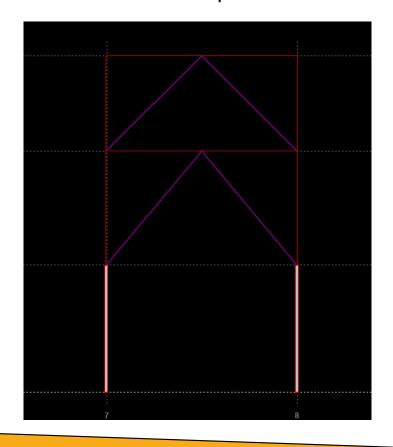
SPEAKER: ANAR YAZJI

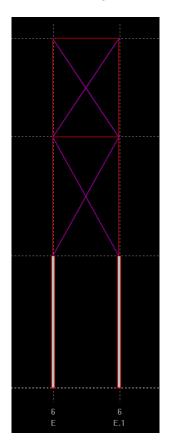

[1.5VL (4" Total) 18-Gage Composite Deck]

Floor Beams: W12x19 / W16x26

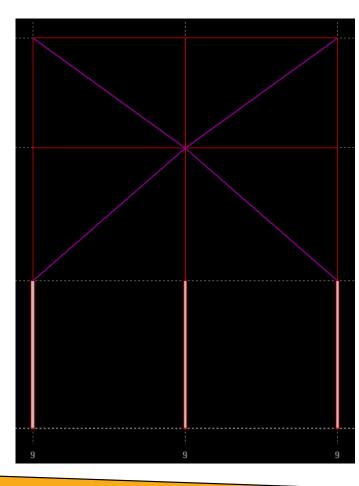
Interior Girders: W21x44 / W21x50

Perimeter Beams: W12x19 / W16x31


1-story columns: HSS 6x6x1/4 2-story columns: HSS 8x8x1/4

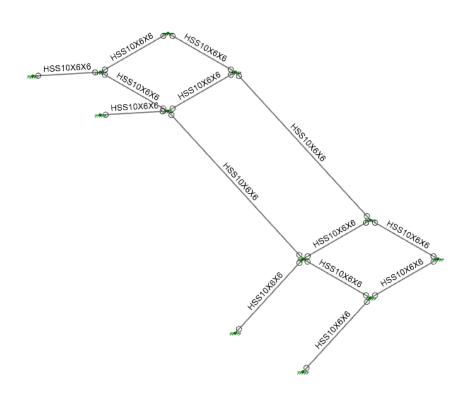

BRACE PROFILES

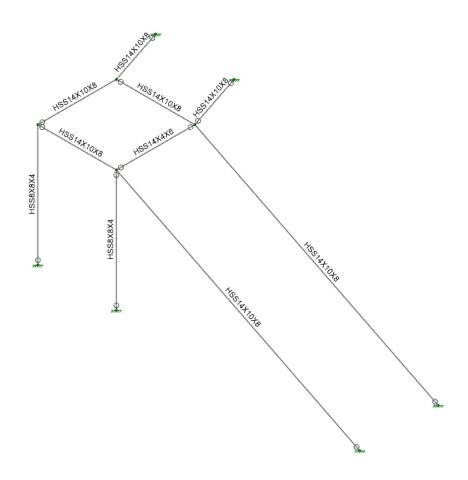
SPEAKER: ANAR YAZJI


HSS 6x6x1/4 +/- 55 kips

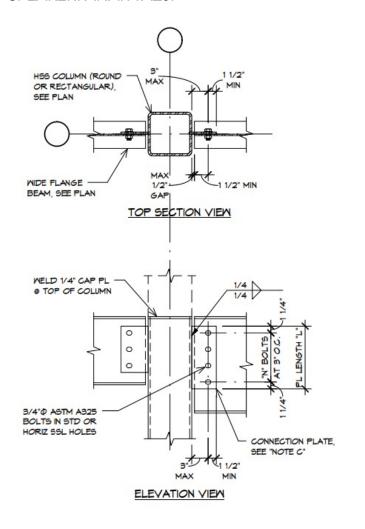
HSS 6x6x1/4 +/- 30 kips

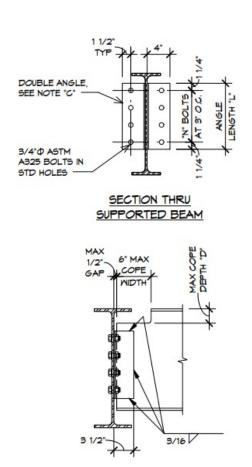

HSS 6x6x5/16 +/- 68 kips



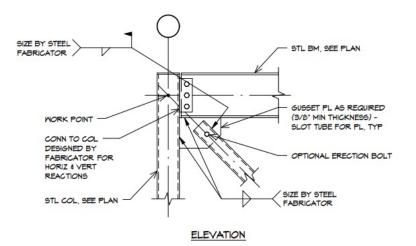

STAIR DESIGNS

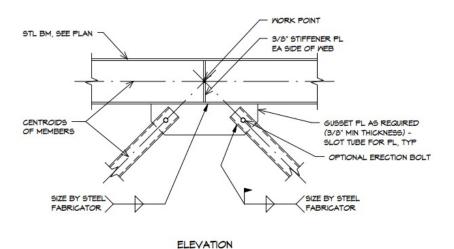
SPEAKER: ANAR YAZJI





CONNECTION DETAILS

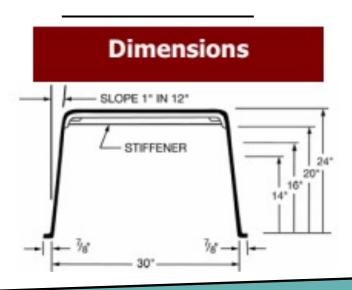

SPEAKER: ANAR YAZJI



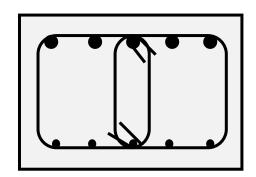


SECTION THRU

SUPPORT


FOUNDATION FRAMING

SPEAKER: ANAR YAZJI


Slab: 5" w/ #4 @12" Each Way

Beams:

- 25"D x 36"W (Interior Girders)
- 25"D x 30"W (Perimeter)
- 25"D x 8"W (Pan-Joists)

27

Top reinforcement is lap-spliced at midspan, bottom reinforcement is lap-spliced over supports

Reinforcement hooks into end supports

FOUNDATION REINFORCEMENT

SPEAKER: ANAR YAZJI

(Interior Girders)

(Perimeter Beams)

(Pan-Joists)

25"D x 36"W

25"D x 30"W

25"D x 8"W

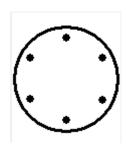
Top: 5-#10s

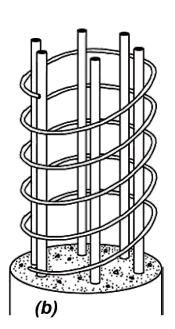
Top: 5-#8s

Top: 2-#8s

Bottom: 5-#8s

Bottom: 5-#6s

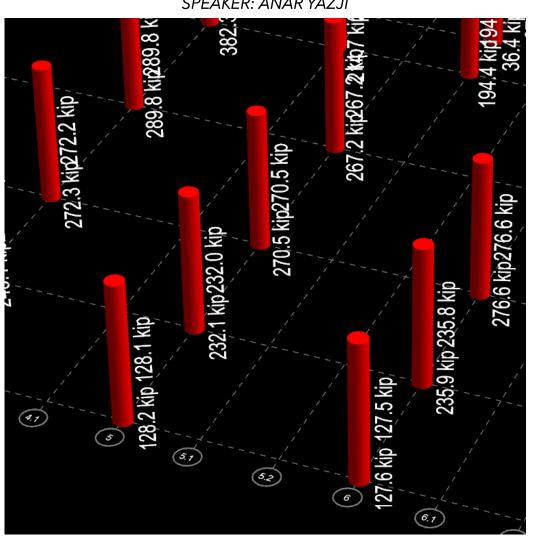

Bottom: 2-#8s


#4 (4-legged) stirrups: 1@3", 1@6", X@18" BAL@24" #4 (4-legged) stirrups: 1@3", 1@6", X@18" BAL@24"

#4 (2-legged) stirrups: 1@3", 1@6", X@18" BAL@24"

PIER DESIGN

SPEAKER: ANAR YAZJI

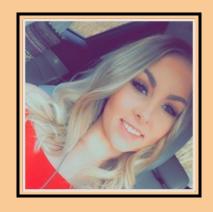


30" Diameter

6-#6 Longitudinal

#4 Spiral Stirrup

Straight shaft, embeds 2-4ft into the limestone (24ft total height)



QUESTIONS?

Carter Bryant

Land Development, Codes, LID

Cheyenne Stevens

Schedule & Cost, Utilities, Environmental

Anar Yazji

Structural Design & Detailing

Ahmad Alnourachi

Geotechnical Analysis, Soil Treatment

Reynaldo Reyna

Drainage, Site Plans